Here's a link to the Any Dice probability calculator showing the probabilities of the Explosive Roll for Novus.
http://anydice.com/program/3cfe
Here's the code in case it ever gets lost;
Code:
function: implode I:n {
if I = 1 { result: 1 + [implode d10] }
else { result: d10 }
}
function: explode E:n {
if E = 10 { result: 10 + [explode d10] }
else { result: d10 }
}
function: novusroll X:n plus T:n {
if X = 1 & T = 10 {result: 11}
if X = 10 & T = 1 {result: 11}
if X >= 2 & X <= 9 {X: X}
if T >= 2 & T <= 9 {T: T}
if X = 1 & T >= 2 & T <= 9 { result: X + T - [implode d10] }
if T = 1 & X >= 2 & X <= 9 { result: T + X - [implode d10] }
if X = 10 & T >= 2 & T <= 9 { result: X + T + [explode d10] }
if T = 10 & X >= 2 & X <= 9 { result: T + X + [explode d10] }
if T = 1 & X =1 { result: T + X - [implode d10] - [implode d10] }
if T = 10 & X = 10 { result: T + X + [explode d10] + [explode d10] }
result: X + T
}
function: novaroll P:n plus K:n {
if P = 1 & K = 10 {result: 11}
if P = 10 & K = 1 {result: 11}
if P >= 2 & P <= 9 { result: 0 }
if K >= 2 & K <= 9 { result: 0 }
if P = 1 & K >= 2 & K <= 9 { result: 0 }
if K = 1 & P >= 2 & P <= 9 { result: 0 }
if P = 10 & K >= 2 & K <= 9 { result: 0 }
if K = 10 & P >= 2 & P <= 9 { result: 0 }
if K = 1 & P =1 { result: 0 }
if K = 10 & P = 10 { result: 0 }
}
set "maximum function depth" to 10
output [novusroll d10 plus d10]
output [novaroll d10 plus d10]
Notes: This displays 2 outputs, one the range and probabilities of the Explosive Roll, the 2nd the chances of getting a Nova Roll. The program limits incursion, so it has to truncate results. However, I feel the sampling is decent enough to get an idea of the overall probabilities.
You can see that negative plunging numbers from implosions are less probable than higher ones from explosions. Also the nature of the implosion limits the lowest numbers. Combining this with heroic characters' stats, you can see why snags tend to happen less often (something I imagine players appreciate! :o).